
1222 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 3, MARCH 2014

Improving Spectrum Efficiency via In-Network
Computations in Cognitive Radio Sensor Networks

Shih-Chun Lin, Student Member, IEEE, and Kwang-Cheng Chen, Fellow, IEEE

Abstract—To alleviate the spectrum shortage for sensor net-
works with tremendous sensors, cognitive radio technology
enabling multi-hop opportunistic networking and concurrent
transmissions overlaying the primary system suggests an attrac-
tive facilitation of large-scale wireless sensor networks (WSNs)
and machine-to-machine communications. However, subsequent
significant end-to-end delay in large WSN can prohibit practical
applications. Leveraging the nature of traffic in sensor networks,
we develop in-network computation to reduce requisite transmis-
sions and to accommodate more concurrent transmissions under
a given spectrum. Specifically, distributed source coding and
broadcasting in wireless communication are exploited to build the
computational framework and the achievable network capacity
is examined. Furthermore, a greedy networking algorithm is
adopted to justify significant improvement on end-to-end delay
and further statistical QoS guarantee, while yielding considerable
system throughput gain for practical deployment of WSNs. Per-
formance evaluations confirm that we successfully demonstrate
communication efficiency from in-network computations and
facilitate a new paradigm for spectrum efficient cognitive radio
networks, which shall be applicable in general multi-hop wireless
networks and spectrum-sharing WSNs.

Index Terms—In-network computation, distributed source cod-
ing, cognitive radio, QoS guarantees, wireless sensor networks,
ad hoc networks, machine-to-machine communications.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) [1]–[6] have at-
tracted tremendous attention for their mission-driven

development and deployment. For a large-scale WSN com-
prising lots of sensors, providing an efficient spectrum sharing
with existing wireless networks is surely a trend. As facing
the increasing spectrum demand of wireless services and
devices [7], cognitive radio technology [8] is widely employed
to enhance spectrum utilization [9]. Specifically, exploiting
WSNs for smart grid applications [10], spectrum-aware tech-
nique is recognized as a promising solution to enable re-
liable and low-cost remote monitoring for smart grids. To
fully exploit this technology especially for large WSNs [10]–
[13], more concurrent transmission opportunities within given
spectrum are desired to realize spatial reuse of spectrum. In

Manuscript received December 2, 2012; revised March 30 and September
1, 2013; accepted October 22, 2013. The associate editor coordinating the
review of this paper and approving it for publication was G. Li.

This research was supported by the Intel, National Taiwan University, and
National Science Council under the contract of NSC 101-I-002-001, NTU
102R7501, and NSC 102-2221-E-002-016-MY2.

S. C. Lin was with the INTEL-NTU Connected Context Computing Center,
and is now with the School of Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta, GA (e-mail: slin88@ece.gatech.edu).

K. C. Chen is with the Graduate Institute of Communication
Engineering, National Taiwan University, Taipei, Taiwan (e-mail:
chenkc@cc.ee.ntu.edu.tw).

Digital Object Identifier 10.1109/TWC.2014.011514.121905

addition, maintaining reliable data transportation on top of
numerous opportunistic links in cognitive (radio) multi-hop
sensor networks becomes an essential requirement to bring the
spectrum efficiency into reality. However, as indicated by [14],
there exists an significant end-to-end delay for greater network
diameter in large cognitive machine networks and prevents
practical applications. Thus, it becomes a great challenge
to support an effective end-to-end quality-of-service (QoS)
guarantee with regards of reliable communications in cognitive
radio sensor networks (CSNs), while such likely technology
is applicable for machine-to-machine communications, cyber-
physical systems [15], and spectrum-sharing WSNs.

To achieve efficient spectrum management for cognitive
radios, it is often done via forming the allocation optimization
problems [16]–[18], such as spectrum or resource block allo-
cation, user-based station assignment, and so on. Regarding
multi-channel cognitive radio networks, time-spectrum blocks
are allocated [16] by constructing the subset of the good
assignments and therefore obtain the suboptimal from given
assignments. A CSMA-based multi-channel MAC protocol is
proposed by [17] that optimizes the throughput performance
for co-existing multiple systems. A distributed multi-channel
MAC protocol is further proposed by [18] for energy-efficient
communication in multi-hop cognitive radio networks. Above
efforts only focus on the efficient allocation of primary sys-
tems’ (PSs’) spectrum holes. However, an innovative view
for spectrum efficiency (i.e. throughput per bandwidth) is to
look at the reduction of transmitted data without information
loss by possible computations, as transmission opportunities
are scarce within given spectrum. This approach equivalently
enhances the spectrum efficiency with the same transmitted in-
formation. Specifically, we are motivated to compute the min-
imization of total traffic among nodes in cognitive multi-hop
sensor networks, equivalent to the enhancement of throughput
per bandwidth namely spectrum efficiency. This is actually
an ingenious tradeoff between communication efficiency and
computation, as a new paradigm of in-network computations
and the scope of this paper.

Utilizing in-network aggregation (or computation) tech-
niques [6] for overall spectrum efficiency (i.e. the throughput
supported by per bandwidth usage), it is necessary for nodes to
perform computations on data rather than to simply originate
and forward data (i.e. without data computations for conven-
tional existing scheme) and a cross-layer design is suggested
for optimal performance. We examine the correlation among
transmitted contents by the source sensor and exploit dis-
tributed source coding (DSC) [19] by linear codes [20] to seek
for the traffic reduction. Through distributed computation for
the minimum required transmissions of the destination’s loss-
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less decoding, more transmission opportunities are obtained
for cognitive sensors’ usages.

Inspiring from network flow perspective of random network
coding [21], we first derive the upper and lower capacity
bounds in graph-theoretic max-flow under the computation
framework and obtain the limits for further designated mech-
anisms. Furthermore, to leverage the computation impacts on
the network-level, we adopt the greedy networking to assemble
each node’s computation capability into the whole system’s
behavior. With greedy determination of nodes to execute
DSC and opportunistic assignment of flows among paths, the
networking achieves the minimum aggregated path delay(s)
for end-to-end transmission. Such algorithm contributes the
most in the distributed computing functionality with satisfied
performance, which makes it well suit for next-generation
wireless systems. In addition, regarding the provision of QoS
guarantee for the system throughput in real applications, we
employ statistical QoS guarantee to overcome opportunistic
links and time-vary fading [22]. It is a practical and reasonable
solution for real-time services, which suffer from time-varying
fading. By analytical derivations with Markov inequality and
Chernoff’s bound, two types of QoS guarantees are proposed
and the system throughput within guaranteed delay is conse-
quently obtained. We summarize our methodology as follows:

1) To bring traffic reduction by employing DSC via linear
code schemes.

2) To derive the graph-theoretic max-flow bounds to
present theoretical limits.

3) To propose greedy networking exploiting each node’s
computation ability at link-level and assembles into
good network-level gain.

4) To develop two proposed QoS guarantees that exhibit
remarkable spectrum efficiency enhancement.

Simulation results show that our design outperforms existing
schemes with 10 dB throughput gain or so. Beyond sophisti-
cated link-level algorithms, our proposed approach resorts to
network-level gain via distributed computations and creates a
new research frontier in spectrum sharing (or cognitive radio)
WSNs, with great potential in large wireless networks such as
machine-to-machine communications and ad hoc networks.

The rest of paper is organized as follows. The background
for our study is in Section II and system model is presented in
Section III. In-network computation is examined in Section IV.
Under this computation framework, achievable network capac-
ity is studied in Section V. Greedy networking algorithm is
proposed in Section VI and QoS guarantees are proposed in
Section VII. Performance evaluations are in Section VIII and
this paper is concluded in Section IX.

II. BACKGROUND

Many excellent works [23]–[26] have been extensively
studied for WSNs of different purposes but primarily for
the efficiency of processing data under special purposes.
In [23], a survey of data gathering (collection) is provided
for WSNs with mobile elements. In [24], a comprehensive
study is given for distributed detection and data fusion for
wireless sensors. Aiming at assisted living and residential
monitoring [25], context-aware protocols are presented for

in-network processing. In [26], a data aggregation scheme is
proposed via adaptive compression for WSNs. In light of large
wireless networks, a novel technology known as in-network
computation was proposed to process data before reaching
final destination in large WSNs [1], [3]. In [2], a probably
approximately correct normalized histogram is computed with
lower energy costs via in-network computations. Exercising on
DSC [19], a lot of application specific techniques exist. [4]
achieves energy savings by directed diffusion for wireless
sensor networking. For parallel relay wire-tap network, [27]
studies the information-theoretic secrecy problem and derives
the secrecy capacities for the deterministic diamond and
parallel Gaussian diamond networks. [5] further presents data
fusion to improve the coverage of WSNs.

In addition, another sort of in-network computation [6],
[28]–[30] adopt context analysis for context-aware computing.
In [6], a sort of practical realization of context computing
is examined. To achieve energy-efficient, ubiquitous wireless
connectivity, [28] provides a context-based network estimation
that exploits context information such as time, history, and
device motion. Moreover, to enable context-aware applica-
tions, [29] proposes a novel approach for localization in wire-
less ad hoc networks, advancing the conventional trilateration-
based methods. [30] presents a resource-optimized, quality-
assured context mediation framework for sensor networks,
leading to an optimal estimation of context states. However,
these excellent explorations do not thoroughly consider traffic
flow together with designated mechanisms and thus overlook
realistic routing algorithms. In this paper, inspired by Giridhar
and Kumar’s pioneer efforts [1], [3] in wireless networks, we
aim to bring the merits of data computation into networking
and QoS guarantees upon opportunistic links, to exchange
computation complexity for system throughput in cognitive
sensor networks per given spectrum under the general sce-
nario.

III. SYSTEM MODEL

Considering spectrum efficiency with multiple cognitive
radio sensors overlaying PSs, we first examine the network
topology for CSNs and study opportunistic links from cog-
nitive radio’s access schemes. Then, we provide the traffic
model. Note that, in the rest of paper, we denote CRs for
cognitive radio sensors to ease readability. Important notations
in this paper are summarized in Table I.

A. Network Topology

A multi-hop cognitive sensor network consists of a source
CR (denoted as node nS), a destination CR (denoted as nD),
and several relay CRs (denoted as nRs) that can help relay
packet flows from nS to nD. We assume that there are totally
n relay CRs. In order to avoid the interference to PSs, links
in networks are available under idle duration of PSs that
dynamic spectrum access can effectively fetch such transmis-
sion opportunities, after effective spectrum sensing [31]. Link
available period results in random network topology even all
nodes being static. We assume that the nS , the nD, and the
nRs are mobile but stationary during each unit time interval
(i.e. the network topology varies per unit time). Figure 1
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Fig. 2. State transition diagram for j-th link of i-th opportunistic path.

shows a stationary topology during unit time interval. It is
supposed that there are K possibly disjointed opportunistic
paths between nS and nD. The set of these paths is denoted
as P = {p1, p2, ..., pK}, where the i-th opportunistic path pi
consists of Ji+1 links, for i = 1, 2, ...,K . Also, the set of links
in such paths is labeled by ι = {J1 + 1, J2 + 1, ..., JK + 1}.
nS transmits a set of data X1, X2, ...XK over these K paths.
The values of the data are drawn from some joint distribution
and can be either continuous or discrete.

B. Opportunistic Link Model

To avoid generating destructive interference, CR links
are mandated to exploit temporary spectrum holes for data
transmission [31]. The spectrum for CR’s transmissions is
temporarily occupied or unoccupied by PSs. This transmission
opportunity on a CR link can be mathematically modeled as a
two-state discrete-time Markov chain with the available state
“1” (the PS does not occupy the link) and the unavailable
state “0” (the PS occupies the link) [32]. The state transition
diagram of the j-th opportunistic link of the i-th path is shown
in Figure 2. We could formulate the available probability of
this link as σj

i = P i,j
01 /(P

i,j
01 + P i,j

10 ). Furthermore, to accom-
modate wireless fading effects and interference models among
secondary transmissions, we model each attempt to transmit
a packet over the j-th link of the i-th path as a Bernoulli
process with a successful transmission rate νjCR,i. Specifically,

concerning a successful transmitted packet at a time, νjCR,i

can be recognized as the probability for the received signal-
to-interference-noise ratio SINRr higher than the threshold
κ. As for multi-path fading environment, received signal may
suffer from Rayleigh fading and

νjCR,i=Pr{ω(d/d0)
−αPs

N0 + I
> κ}

=exp

(
−κN0d

α

ΩPsdα0

)
EI

[
exp

(
− κIdα

ΩPsdα0

)]
, (1)

where Ps is transmitted signal power, N0 is noise spectral
density, I is the interference received by CR receiver,d0 is
a reference distance for antenna far field, d is the distance
between transmitter and receiver, α is the path-loss exponent,
and Ω is the second moment of Rayleigh distribution ω. Re-
garding different interference models [33], [34] (i.e. protocol
model with one primary interference or n interferences as well
as physical model), I could be explicitly expressed by the
channel gain of interfered nodes to CR receiver. For example,
with one primary interference and its channel gain H and
distance d′ to CR receiver,

νjCR,i = exp

(
−κN0d

α

ΩPsdα0

)
ΩHPsd

−α

ΩHPsd−α + κPsd′−α
. (2)

Similarly, νjPS,i accounts for the wireless fading and interfer-
ence of PS around such the link.

C. Traffic Model

Packet data session with variable packet size is considered.
For the j-th opportunistic link of the i-th path, Poisson packet
arrival with rate λj

CR,i is chosen, since it suits for the aggregate
traffic of a large number of similar and independent packet
transmissions [35]. To serve packets with variable size, expo-
nential distribution with μj

CR,i is chosen due to its memoryless
character. Thus, employing first come first served (FCFS)
policy, we model opportunistic link as M/M/1/∞/FCFS
queue [36]. Meanwhile, PS’s spectrum usage is also modeled
as M/M/1/∞/FCFS queue with continuous-time Markov
chain of queue size as in Figure 2, where Sk denotes that there
are k packets in PS’s traffic queue. λj

PS,i and μj
PS,i denote
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TABLE I
IMPORTANT NOTATIONS UTILIZED IN THIS PAPER

Notations Descriptions
K Number of opportunistic paths

P = {p1, p2, ..., pK} The set of disjointed paths
Ji Number of links for pi
σj
i The available probability of j-th link of i-th opportunistic path
n Number of relay CRs

νjPS,i and νjCR,i Successful transmission rates for PSs and CRs of j-th link in i-th path

Δj
CR,i Transmitted packet size of j-th link in i-th path for CRs’ traffic

NPS and NCR Encoding symbols at a time for PSs and CRs
BPS and BCR Packets per block for PSs and CRs

Cj
PS,i and Cj

CR,i Capacities of j-th link in i-th path for PSs’ and CRs’ traffic

lji Expected capacity of j-th link in i-th path for CRs’ traffic
γj
i Expected capacity under linear codes (i.e. γj

i = NCRlji )
μj
PS,i and μj

CR,i Packet service rates of j-th link in i-th path for PSs and CRs
λnS Packet arrival rate from CR’s source (i.e. nS)

λCR = [λCR,1 · · · λCR,K ]T Arrival rate to total K paths
a = [a1 · · · aK ]T Traffic assignment vector regarding packet arrival rate

μgreedy,j
CR,i Packet service rates of CRs under greedy networking algorithm
W End-to-end delay for CRs’ packets

Dmax Requisite bound of end-to-end delay
τ Degree of QoS guatantees

Z = (Z1, ..., ZK) Vector of transmitted information form CR’s source
X = (X1, ...,XK) Quantized information vector with respect to Z

H(X) Entropy of X
h(Z) Differential entropy of Z
R(Xi) Feasible rate of Xi

H(Xi|Xic) Conditional entropy of Xi

T Number of jointly ergodic processes for PSs’ DSC

for PS’s Poisson packet arrival and service rates upon the
link. Concerning wireless channel fading as in Section III-B,
μj
CR,i and μj

PS,i become νjCR,iμ
j
CR,i and νjPS,iμ

j
PS,i by the

formulation of geometric sum of exponential distributions. The
available probability of opportunistic link is also recognized as
another Bernoulli trail and is obtained from PS’s transmission
as

σj
i =

νjPS,iμ
j
PS,i − λj

PS,i

νjPS,iμ
j
PS,i

. (3)

In summary, for the j-th opportunistic link of the i-th path,
we have M/M/1/∞/FCFS queue model with packet arrival
rate λj

CR,i and service rate σj
i ν

j
CR,iμ

j
CR,i.

IV. IN-NETWORK COMPUTATION

Although the correlation structure of source’s transmitted
data [3], [6] has been initially explored in WSN, it has
never been studied to achieve spectrum efficiency in CSNs.
We therefore develop in-network computation to eliminate
the redundancy of transmitted data via distributed source
coding (DSC) as another way to enhance spectrum efficiency.
Specifically, as shown in Figure 3, CR’s available transmission
opportunities without the computations serve as the bench-
mark. When CRs employ in-network computations for their
multi-hop relay traffic, they compress forwarded information
and more concurrent transmissions are granted. Furthermore,
if PSs also conduct such computations for their efficient trans-
missions, less PS’s required traffic allows much more CR’s
concurrent transmissions and greatly facilitates CR’s end-to-
end networking. Note that, as the maximum information ca-
pacity is fixed for given bandwidth, in-network computations

PSs

C
R

1

C
R

2

Spectrum bandwidth

Without in-network computation.

CRs with in-network computation.

CRs and PSs with in-network computation.

Fig. 3. PSs’ and CRs’ spectrum using behavior for the adoption of in-network
computations.

provides a better way for spectrum usage and thus enhances
spectral efficiency (i.e. network effective throughput per band-
width). In other words, in-network computations equivalently
increase the available capacity for data transmissions among
cognitive radio sensors given the spectrum bandwidth (or
maximum information capacity).
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A. Distributed Source Coding

As shown by Figure 3, there are three scenarios for PSs’ and
CRs’ spectrum using when adopting in-network computations.
For the first case, i.e. no in-network computations or conven-
tional methodology, redundant transmissions adopted by CRs
bring less CRs to operate concurrently with the existed PSs.
Furthermore, for the second case, i.e. CRs with computations,
more concurrent transmission opportunities are available for
more CRs operating with PSs. For the last case, i.e. CRs
and PSs with in-network computations, plenty of transmission
opportunities are available for tremendous CRs with PSs and
thus provide great spectrum efficiency for CSNs. Note that,
in the last scenario, PSs might also employ computations
for energy efficiency due to spectrum efficiency. Specifically,
as in-network computations minimize total traffic load via
compressions, spectral efficiency (i.e. network throughput per
bandwidth) enhances accordingly. Furthermore, such enhance-
ment of spectral efficiency could be recognized as better
energy efficiency, as less relays are required to operate now
for successful end-to-end data transportation and subsequently
total communication energy saving.

Suggested by [6], the topology of multiple chain paths in
Figure 1 is suitable for the scenario of hybrid in-network
aggregations that allow the combination of tree-based and
multi-path schemes. We assume the information X1 to XK are
discrete and memoryless and their values are drawn i.i.d. from
a joint distribution p(x1, ..., xK) with the respective rate R(·)
and entropy H(·) functions defined in Table I. In particular,
as in Figure 1, such information is sent with rates R(X1)
to R(XK) by nS independently along K cooperative paths.
While nRs do not generate new information, nS must transmit
enough information upon the network to nD so that nD

can recover the original information losslessly. From Slepian
and Wolf’s work [19], distributed compression of correlated
sources is as efficient as their compression when the sources
can communicate with each other. It implies that by examining
the correlation between transmitted data, the Slepian-Wolf
range is given by � = {(R(X1), ..., R(XK)) : ∀1 ≤ i ≤
K,R(Xi) ≥ H(Xi|Xic)}. Thus, to achieve this region with
the set of K paths, there should be a nR in each chain path
to take charge of compressing data. Similarly, PSs can also
adopt DSC. For the j-th opportunistic link of the i-th path, we
assume the information transmitted by PSs’ traffic is Y j

i . With
the computations operating, the feasible rate for Y j

i is given
by R(Y j

i ) ≥ H(Y j
i |Y j

ic). In the following, linear codes [20]
are adopted as it approaches Slepian-Wolf bounds arbitrarily
closely.

B. Linear Codes

The transmission schemes of linear codes are based on
block-wise coding. Assume nS encodes NCR symbols at a
time, the j-th opportunistic link of the i-th path with capacity
Cj

CR,i bits/sec can transmit �NCRCCR� bps per block. Then,
the service rate is given by μj

CR,i = �NCRC
j
CR,i�/Δj

CR,i

where Δj
CR,i denotes for transmitted packet size of the

link. Furthermore, with BCR packets per block, Δj
CR,i =

�NCRR(Xi)�/BCR. Thus, μj
CR,i becomes BCR�NCRC

j
CR,i�

1 2 3 J1

nS

1 2 3 J2
nD

1 3 JK2

Gk Gk'

|Gk|=k+1 |Gk'|=n-k+1

Fig. 4. There are
∏K

i=1(Ji +1) cuts for which |Gk| = k+1 and |G′
k| =

n− k + 1. The figure shows one such cut that partitions the network into a
bipartite graph.

/�NCRR(Xi)�. To simplify the presentation, we assume that
all Cj

CR,i and R(Xi) are rational and the block length NCR is
large enough so that NCRC

j
CR,i and NCRR(Xi) are integral.

From Section IV-A,

μj
CR,i =

BCRC
j
CR,i

H(Xi)
without DSC;

BCRC
j
CR,i

H(Xi|Xic)
with DSC.

Moreover, PSs might also employ DSC for their in-network
computation. Therefore, with the similar approach as CRs, for
the PSs around the j-th opportunistic link of the i-th path,

μj
PS,i =

BPSC
j
PS,i

H(Y j
i )

without DSC;
BPSC

j
PS,i

H(Y j
i |Y j

ic)
with DSC.

V. GRAPH-THEORETIC MAX-FLOW CAPACITY BOUNDS

To propose a preferable networking algorithm, the theoretic
limit on network capacity is crucial. Considering the topology
of chain paths, we appeal random network coding to the graph-
theoretic max-flow capacity [37]. In the following, we derive
the capacity bound for a transmission cut first, and then goes
to the lower and upper capacity bounds for the network. Some
related notations are summarized in Table I.

A. Transmission Cut

Since we model opportunistic links as M /M /1/∞ /FCFS
queues in Section III-C, for the j-th link of the i-th path,
the capacity of the link Cj

CR,i (bits/sec) is a Poisson r.v.
with E[Cj

CR,i] = lji . Furthermore, under linear codes scheme,
Cj

CR,i becomes a Poisson r.v. with γj
i = NCRl

j
i from

Section IV-B. Regarding chain topology, we assume γ1
i =

... = γJi+1
i = γi for 1 ≤ i ≤ K (i.e. for the i-th path, all link

capacities are independent and identically Poisson distributed
CCR,i as CCR,i ≥ 0 with mean γi).

Lemma 1: Let Ck =
∑K

i=1 CCR,i be the capacity of a cut
in chain topology as shown in Figure 4. The cut is defined by
partitioning the n+2 nodes into a bipartite graph with a group
Gk (|Gk| = k+1) such that nS ∈ Gk and the complementary
group G′

k (|G′
k| = n−k+1) such that nD ∈ G′

k. If 0 < ε < 1,
then Pr{Ck ≤ (1 − ε)E[Ck]} ≤ exp{[−ε − (1 − ε) ln(1 −
ε)]

∑K
i=1 γi}.
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Proof: Since CCR,i is Poisson distributed with γi for 1 ≤
i ≤ K , for a cut Ck =

∑K
i=1 CCR,i, it is Poisson distributed

with
∑K

i=1 γi. Let θ ≥ 0, then

Pr{Ck ≤ (1 − ε)E[Ck]}
= Pr{e−θCk ≥ e−θ(1−ε)E[Ck]} ≤ min

θ≥0

E[e−θCk ]

E[e−θ(1−ε)E[Ck]]

= min
θ≥0

exp{θ(1− ε)E[Ck]}E[e−θCk]

= min
θ≥0

exp{[θ(1− ε) + (e−θ − 1)]

K∑
i=1

γi}.

The inequality of minimum function is from Chernoff’s bound.
By differentiation with θ, we get the minimum value −ε−(1−
ε) ln(1− ε) when θ equals to ln[1/(1− ε)] and end the proof.

B. Lower and Upper Capacity Bounds for CSNs

Based on Lemma 1, we can obtain a corollary that bounds
the probability that any cut in the graph falls below (1 − ε)
times its mean value.

Corollary 1: Let Ck be as defined in Lemma 1 and define
Ak to be the event {Ck ≤ (1−ε)E[Ck]}. Then, Pr{⋃k Ak} ≤
exp{ln[∏K

i=1(Ji + 1)] + [−ε− (1 − ε) ln(1− ε)]
∑K

i=1 γi}.
Proof: Please see Appendix A.

Now we bear the relation between the minimum cut Cmin

and C0 via E[Ck]. That is, we upper-bound the probability
that a random instance of the chain graph has a minimum cut
≤ (1− ε)E[C0]. E[C0] is the expected value of the total flow
to nS’s nearest neighbors (i.e. all of the first node in each
chain path).

Theorem 1: Consider the model specified for opportunistic
links as M/M/1/∞/FCFS queues in Section III-C and with
the definition of cuts by Lemma 1 for chain topology shown
in Figure 4. If 0 < ε < 1, then with the probability at least
1− exp{ln[∏K

i=1(Ji+1)]+ [−ε− (1− ε) ln(1− ε)]
∑K

i=1 γi},
the network coding capacity CNC

nS ,nD
> (1− ε)E[C0].

Proof: Please see Appendix B.
Theorem 2: Consider the model specified for opportunistic

links as M/M/1/∞/FCFS queues in Section III-C and with
the definition of cuts by Lemma 1 for chain topology shown
in Figure 4. If 0 < ε < 1, then with the probability at least
1− exp{[ε− (1 + ε) ln(1 + ε)]

∑K
i=1 γi}, the network coding

capacity CNC
nS ,nD

≤ (1 + ε)E[C0].
Proof: Please see Appendix C.

Under in-network computation framework in Section IV, The-
orem 1 and 2 provide achievable capacity bounds and serve as
the benchmark for QoS guaranteed throughput as considered
in Section VII.

VI. GREEDY NETWORKING ALGORITHM

To bring the merit of in-network computations into network-
level (i.e. for end-to-end transmissions), we assemble each
individual nodes and links via routing algorithm. Proposed
greedy networking aims to provide optimal performance by
guiding the flows to draw possibly greatest advantage from
computations. It achieves the minimum aggregated path de-
lay(s) by exploiting optimal compression for data reduction.
In the following, the end-to-end delay is first examined.

A. End-to-end Delay Analysis

As considering the end-to-end delay of data transportation, a
common and widely adopted definition is the minimum path
delay among all possible paths. According to Figure 1, for
nS’s incoming Poisson traffic with λnS , nS splits the traffic
and sends Poisson arrival with rate λ1

CR,i to the i path. That
is, with K disjoint paths between nS and nD,

∑K
i=1 λ

1
CR,i =

λnS . Note that, for the i-th path, there are Ji+1 opportunistic
links while each is modeled as a M/M/1/∞/FCFS queue
from Section III-C. Also note that, when concerning link delay,
we focus on the transmission delay and queueing delay in a
node. Although the processing delay might come from in-
network computations, this term is relatively negligible from
Moore’s law [38] for exponentially fast processing abilities.
The propagation delay is also not a concern for fair evaluation
of algorithms. Given λCR,i as the arrival rate to the i-th
path, the time to transmit a packet through such path Di

is obtained as follows. With the queue model for the j-th
link of the i-th path, average waiting time for the service is
Wq = λCR,i/[σ

j
i ν

j
CR,iμ

j
CR,i(σ

j
i ν

j
CR,iμ

j
CR,i − λCR,i)]. The

packet delay is then given as 1/σj
i ν

j
CR,iμ

j
CR,i + Wq =

1/(σj
i ν

j
CR,iμ

j
CR,i − λCR,i). Furthermore, from the Burke’s

Theory [36], the arrival rate of the j + 1-th link is the
same with the j-th link and both equal to the arrival rate
of the i-th path (i.e. λj

CR,i = λj+1
CR,i = λCR,i). By ac-

cumulating Ji + 1 link delay for the i-th paths, Di =∑Ji+1
j=1 1/(σj

i ν
j
CR,iμ

j
CR,i − λCR,i). Thus, the end-to-end de-

lay W (i.e. the required time for the destination to re-
ceive the source’s data from one of K possible paths) is
min(D1, ..., DK) = min1≤i≤K

∑Ji+1
j=1 1/(σj

i ν
j
CR,iμ

j
CR,i −

λCR,i).

B. Greedy Networking Algorithm

The algorithm aims to obtain the minimum end-to-end
delay and consists two steps to fulfill this purpose: greedy
computation and opportunistic scheduling. First, the algorithm
greedily determines the nodes to dominant in-network com-
putations. Instead of equally partitioning traffic load, such
algorithm employs opportunistic scheduling and assigns the
flows with regard to relay qualities of all possible paths. Note
that, while we distribute the source’s data into K opportunistic
paths for relaying, the destination is able to decode the
information only when it receives the data from K paths. A
more suitable objective function for proposed opportunistic
scheduling becomes minimizing the aggregated path delay(s).
Moreover, minimizing such metric enables the assignment of
large traffic loads to the opportunistic paths with good relaying
conditions (i.e. the abilities of fast packet transmissions) while
small portions to the paths with bad conditions. This’s the
reason for the so-called ”opportunistic” scheduling as the
algorithm opportunistically assigns traffic load with respect
to corresponding path delay(s).

From Section IV, there is one node for each opportunistic
path to dominate in-network computation for maximizing the
link service rates. Considering the greedy computation for the
i-th opportunistic path, the favored node j should compress the
data as early as possible. That is, argmin

j
Di(j) gives the first
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Algorithm 1 Greedy Networking
Greedy computation phase:

Source greedily decides nodes for computations.
Obtain μgreedy,j

CR,i for all links by equation (4).
Opportunistic scheduling phase:

Collect PSs’ traffic characteristics to solve (4).
Obtain agreedy for further flow assignment.

Networking phase:
Source makes node list for computations and sets up a timer.
while (1) do

Source randomly mixes packets in a single batch by
random network coding [21].

Source assigns flows to K paths acc. to agreedy with
the list.

if Destination doesn’t receive the packet then
for every received packet relay node z do

Decodes and saves new information.
if relay node z is in the list then

z employs linear codes [20] for DSC.
end if
z sends the packet to its forwarder(s).
if Destination receives the packet then

break
end if

end for
else

break
end if

end while
Destination sends ACK;
Source moves to next batch once it receives ACK or a
timeout happens.

node of the path. From the chain topology, j is to be the first
node in the path and it is the same for i = 1, ...,K . Therefore,
the service rates of all opportunistic links are settled. That is,
μgreedy,j
CR,i = BCRC

j
CR,i/H(Xi|Xic) for 1 ≤ j ≤ Ji + 1 and

1 ≤ i ≤ K .
Next, while nS exercises K opportunistic paths for relaying,

it assigns its packet arrival with λCR,i to the i-th path, for
1 ≤ i ≤ K . That is, with λCR = [λCR,1 · · · λCR,K ]T ,
traffic assignment vector a = [a1 · · · aK ]T , and

∑K
i=1 ai = 1,

λCR = aλnS . As mentioned, the opportunistic scheduling
aims to minimizes the aggregated path delay(s) for nS’s traffic
assignment. The scheduling assigns traffic loads according to
path relaying capabilities and avoids any arbitrarily large path
delay(s). The opportunistic scheduling can be formulated as a
delay-minimizing problem with respect to a. The optimization
problem is obtained as

Minimize
∑K

i=1 Di(λCR)
Subject to 1Ta = 1, a 
 0.

(4)

Therefore, W greedy = min(Dgreedy
1 , ..., Dgreedy

K ) is obtained
with agreedy = [agreedy1 · · · agreedyK ]T .

In Algorithm 1, after greedy computation and opportunistic
phases, the source (i.e. nS) randomly mixes packets in a single
batch with linear combinations and exercises K cooperative

paths for relaying as in Figure 1 by random network cod-
ing [21]. nS keeps a timer to indicate the specific batch is
totally loss without any chance for the destination (i.e. nD) to
successfully decode batch of data. The period of timer might
correspond to historical transmission behavior and current
cooperative relay conditions (i.e. available relay paths). From
the structure of these diverse paths, each CR relay operates
the packet for different purposes of applications and transmits
a new coded packet to next forwarder along the path. nD

continuously verifies whether it gets the batch of packets,
determines the acknowledgement (ACK) transmission. Once
there is a timeout or received ACK message, nS moves
to next batch for successive transmissions. Note that, while
ACK might be lost when transmitting back to nS , the source
would not stop forwarding the specific batch of data before
it receives ACK or timeout happens. nD will keep sending
ACK as it collects all batch of data for the specific batch. To
help destination be aware of the size of batches, the source
and destination might have a consensus for such information
during signaling session before data transmissions session.
Thus, the error recovery mechanism is built and embedded
in proposed greedy networking. Also note that, while the
period of timer highly dominates the performance for batch
transmissions, too short period brings successive failures of
end-to-end communications and thus seriously deteriorates the
qualities of applications.

The importance of proposed networking is that any prior
knowledge of network topology or the assumption of end-
to-end routing information is not required at each node,
which significantly reduces the communication overhead of
control signaling. Specifically, for the considered diverse path
structure, each relay path simply transmits a new coed packet
to the destination. Such coded packet is generated by randomly
combing the source’s data via randomly generated coefficients.
The destination is then able to obtain the original data once re-
ceiving enough coded packets from paths. It implies that there
is no need to maintain available paths real-time even though
they might change over block transmissions of linear codes.
Thus, the mechanism of random network coding enables the
proposed algorithm to provide successful data transportation
without the need of global networking information for each
single node and without maintaining the path information.

VII. STATISTICAL QOS GUARANTEED THROUGHPUT

To fully understand the trade of computation complexity for
spectrum efficiency, we examine statistical QoS guarantees for
end-to-end throughput. Statistical (end-to-end) delay guarantee
is first studied with underlaid greedy networking. Based on
this guarantee and requisite bounded delay of user’s traffic,
the guaranteed throughput is then obtained from two proposed
propositions.

A. Statistical QoS Guarantees

Real-time services care end-to-end delay and requisite
bounded delay. From the impact of time-varying fading, it has
been proven that providing deterministic QoS guarantees (i.e.
the probability of delay requirement violation is zero) over the
Rayleigh fading channels is impossible [39]. A practical and
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reasonable solution is to provide statistical guarantees (i.e.
the probability that the packet violates its delay constraint
is bounded) in QoS control as Pr{W ≥ Dmax} ≤ τ ,
where W is end-to-end delay, Dmax is requisite bound,
and τ characterizes the degree of guarantees. By statistical
inequalities or bounds,

Pr{W ≥ Dmax} ≤ f(W,Dmax). (5)

Formulating the f function for designated routing, we thus get
the end-to-end throughput with statistical delay guarantees as
the maximum available load to nS that satisfies the constraint:

f(W,Dmax) ≤ τ. (6)

B. QoS Guaranteed Throughput in CSNs

To obtain system throughput with guaranteed delay, we
formulate f function in equation (5) by both Markov inequal-
ity and Chernoff’s bound to get the desired throughput with
equation (6).

Proposition 1: For all K opportunistic paths in cognitive
sensor networks (i.e. 1 ≤ i ≤ K), denote δi equals to
minj(σ

j
i ν

j
CR,i μ

greedy,j
CR,i )− agreedyi λnS . The type-I statistical

QoS guarantee exploits Markov inequality to obtain the guar-
anteed throughput with the greedy networking as

Type I:
K∏
i=1

Ji + 1

δi
≤ τDK

max. (7)

Proof: From equation (5), the statistical delay guarantee
for greedy networking is

Pr{W greedy ≥ Dmax}
= Pr{min(Dgreedy

1 , ..., Dgreedy
K ) ≥ Dmax}

=

K∏
i=1

Pr{Dgreedy
i ≥ Dmax} ≤

K∏
i=1

E[Dgreedy
i ]

Dmax

where the derivations are from disjoint paths of the network
topology and from Markov inequality. Furthermore, with the
queueing analysis in Section VI-A, we have Pr{W greedy ≥
Dmax} ≤ ∏K

i=1 1/Dmax

∑Ji+1
j=1 1/(σj

i ν
j
CR,iμ

greedy,j
CR,i −

agreedyi λnS ) ≤
∏K

i=1(Ji+1)/Dmaxδi. Therefore, by equation
(6), the throughput by type-I guarantee is obtained and ends
the proof.

We further exploit tighter Chernoff’s bound in type-II
statistical QoS guarantee as follows.

Proposition 2: For all K opportunistic paths in cognitive
sensor networks (i.e. 1 ≤ i ≤ K), denote δi equals to
minj(σ

j
i ν

j
CR,i μgreedy,j

CR,i ) − agreedyi λnS . The type-II statisti-
cal QoS guarantee exploits Chernoff’s bound to obtain the
guaranteed throughput with the greedy networking as

Type II:
∏K

i=1(
δiDmax

Ji+1 )Ji+1

≤ τ exp{∑K
i=1[δiDmax − (Ji + 1)]}. (8)

Proof: With ϕX(s) denotes for the moment gen-
erating function of X , Pr{W greedy ≥ Dmax} ≤∏K

i=1 mins≥0 e
−sDmaxϕDgreedy

i
(s) where the inequality equa-

tion is from Chernoff’s bound. Furthermore, from the queueing

analysis in Section VI-A, we obtain

Pr{W greedy ≥ Dmax}

≤
K∏
i=1

min
s≥0

e−sDmax

Ji+1∏
j=1

σj
i ν

j
CR,iμ

greedy,j
CR,i − agreedyi λnS

σj
i ν

j
CR,iμ

greedy,j
CR,i − agreedyi λnS − s

≤
K∏
i=1

min
s≥0

e−sDmax(
δi

δi − s
)Ji+1

= exp{
K∑
i=1

[(Ji + 1)− δiDmax]}
K∏
i=1

(
δiDmax

Ji + 1
)Ji+1.

The minimum value occurs when s equals to δi − (Ji +
1)/Dmax Therefore, from equation (6), the throughput by
type-II guarantee is obtained and ends the proof.

We statistically guarantee QoS of traffic in cognitive sensor
networks and obtain guaranteed throughput. Through such
concept, Proposition 1 and 2 both provide system throughput
by different manners with same guaranteed delay. Type-I
guarantee is easier to implement as it concerns the expected
value of path delay. However, for tighter statistical bound in
Proposition 2, type-II guarantee brings more throughput than
type-I as demonstrated in the following section.

VIII. PERFORMANCE EVALUATION

We employ the greedy networking as an integrated algo-
rithm of computation and communication and evaluate its
superiority over the existing solutions (i.e. the purely net-
working without the computations). All simulation parameters
and values are listed in TABLE II. To validate the greedy
networking, the Poisson network topology [40] is established
and employed opportunistic links for relay are those having
successful transmission rate greater than 0.6. Furthermore,
as the successful transmission rates highly depend on the
distance between transmitter and receiver, there should be
a certain threshold for the distance to make successful link
transmissions. That is, we should only consider the suc-
cessful transmission rates within a certain range, where the
lower bound of range comes from the threshold of distance.
Thus, we set this range as [0.6, 1] for both primary and
secondary systems with simplicity in our simulation setting.
Further considering link capacities, we set the mean value
for both systems around [750, 850] in order to matching the
practical setting of environments. Simulation results certify
that the proposed solution successfully realizes in-network
computation for spectrum efficiency from remarkable end-
to-end throughput enhancement with guaranteed delay. In
the following, We first study the capacity bounds and then
establish the computation framework for evaluating our greedy
networking and statistical QoS guarantees.

A. Lower and Upper Capacity Bounds

To present network capacity via random network coding,
we first generate a histogram of the nS-nD minimum cuts in
Figure 5. With about 4000 rounds of fixed parameter setting in
TABLE II, Figure 5 shows the possible limits for achievable
throughput via network coding, serving as the benchmark for
designs of routing algorithms. In Figure 6, the capacities, as
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TABLE II
SIMULATION PARAMETERS AND VALUES FOR PERFORMANCE EVALUATIONS

Parameters Values Parameters Values
Area for PPP [40] 1000 × 1000m2 n 1000

K 10 νjPS,i and νjCR,i [0.6, 1)
NPS 2 NCR 4

BPS and BCR 10 T 12

Cj
PS,i and Cj

CR,i Poisson distribution with mean [750, 850] (bps)
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Fig. 5. Histogram of nS -nD minimum cuts for Poisson CSNs.
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Fig. 6. Network coding capacities and error ranges of network coding with
respect to K paths and NCR block-wise coding.

well as the error ranges from lower and upper bounds, are
further investigated under different amounts of opportunistic
paths (i.e. K) and block-wise coding (i.e. NCR). For each
specific realization of network topology and linear codes, the
error range accumulates the distance from the true value to the
upper and lower bounds, as at least 90% confidence interval
that true value lies between two bounds. While increasing
K and NCR, error range decreases and these bounds present
accurate indications for true values of network capacity. Thus,
above results not only reveal the theoretical limits regarding
system throughput, but also indicate the practicability of
network coding upon cognitive sensor networks.

Algorithm 2 Computation Framework
Establish the p.d.f. of observations in equation (9).
for 1 ≤ i ≤ K do

Construct H(X) and H(Xi|Xic).
for 1 ≤ j ≤ Ji + 1 do

Construct PSs’ H(Y) and H(Yk|Ykc) for the j-th
opportunistic link of the i path.

Obtain μj
PS,i by equation (4).

Compute σj
i from equation (3).

end for
end for
Obtain μj

CR,i for all links by equation (4).

B. Computation Framework

We establish the computation framework for our DSC
scheme as follows and summarized in Algorithm 2. As in
Figure 1, let the random vector of transmitted information
from nS be denoted as Z = (Z1, ..., ZK). Suggested by [41],
a jointly Gaussian model was exploited. Then, the p.d.f. of
observations by the first node of each opportunistic path is
assumed to be

fZ(z1, ...zK) = 1
2πK/2|ΣZZ |1/2×
exp{− 1

2 (z− μz)
TΣ−1

ZZ(z− μz)} (9)

where ΣZZ is the covariance of the observations. We assume
a correlation model where ΣZZ(i, i) = δ2 and ΣZZ(i, j) =
δ2 exp(−cdβij) when i �= j. c and β are positive constants
and dij is the distance between node i and j. It is further
assumed that the samples are quantized independently at all
first nodes with the same quantization step Φ that is suffi-
ciently small. Under these conditions, the quantized random
vector X = (X1, ..., XK) is H(X) ≈ h(Z) − K logΦ as
shown in [42] where H(X) represents the entropy of X
and h(Z) = 1/2 log(2πe)K |ΣZZ | represents the differential
entropy of Z. The conditional entropy is

H(Xi|Xic) ≈ 1
2 log

[
(2πe)K−|ic| |ΣZZ |

|ΣZicZic
|
]

−(K − |ic|) logΦ.
(10)

Such conditional entropies are from Slepian-Wolf region by
sensors’ DSC as mentioned in Section IV-A. Similarly, PSs
might also employ DSC for their traffic. Specifically, for
PSs around the j-th opportunistic link of the i-th path, let
the random vector of transmitted information be denoted as
Wj

i = (W j
1,i, ...,W

j
T,i). (Omit further notations for the j-

th link of the i-th path in the followed derivation.) The
covariance of the jointly Gaussian model is ΣWW where
ΣWW (k, l) = δ2PS and ΣWW (k, l) = δ2PS exp(−cPSd

βPS

kl )
when k �= l. The quantization step ΦPS is also assumed to be
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Fig. 7. Aggregated path delay with respect to traffic arrival rate λnS . No
computation types are represented for existing schemes.

the same and sufficiently small. Thus, the quantized random
vector Y = (Y1, ..., YT ) is H(Y) ≈ h(W) − T logΦPS

where H(Y ) represents the entropy of Y and h(W) =
1/2 log(2πe)T |ΣWW | represents the differential entropy of
W. Then,

H(Yk|Ykc) ≈ 1
2 log

[
(2πe)T−|kc| |ΣWW |

|ΣWkcWkc |
]

−(T − |kc|) logΦPS .
(11)

For the following evaluations, we choose δ2 = δ2PS = 1,
c = cPS = 1, and β = βPS = 1. Moreover, the quantization
step size is chosen to be Φ = ΦPS = 0.01.

C. Performance of the Greedy Networking

We compare greedy networking with sorts of algorithms
that are from different combinations of computation and
scheduling strategies. Existing schemes are those networking
without concerning computations and serve as the benchmark.
Worst, random, and greedy computation are those schemes
who select the last, the arbitrary, and the first nodes of paths to
dominate computing functionality, respectively. Moreover, nS

either equally distributes its traffic among all paths by equal
scheduling or opportunistically assigns traffic for minimum
aggregated delay by opportunistic scheduling. As mentioned
in Section VI-B, the greedy networking employs greedy
computation with opportunistic scheduling.

In Figure 7, with increasing traffic from nS , the significant
delay improvement of greedy and random computations come
from eliminating redundant transmissions via data compres-
sion of DSC. There is barely different between the perfor-
mance of worst computations and existing schemes due to
limited transmission opportunities of compressed data in worst
computations (i.e. only the last hop of every opportunistic
path). Moreover, regarding random computations, Figure 7
shows the preference for opportunistic scheduling due to less
delay. Considering the maximum path delay in Figure 8, the
disadvantage of equal scheduling is further examined with
respect to PSs’ traffic. Under equal distribution of nS’s traffic,
equal scheduling cannot avoid the possibility of arbitrarily
large path delay(s), whereas opportunistic scheme can. On
the other hand, regarding better computation ability in greedy
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Fig. 9. End-to-end throughput with guaranteed delay (i.e. Dmax = 20ms
and τ = 0.02) for two types of statistical guarantees with respect to traffic
arrival rate of all PSs.

computations, both figures suggest that such drawback of
equal scheduling is suppressed. Greedy computations annihi-
late large path delay by only transmitting essential information
with fewer traffic loads. Thus, with greater computation and
scheduling capabilities, greedy networking works perfectly
under CRs’ or PSs’ heavy traffic.

D. End-to-end Throughput with Guaranteed Delay

To evaluate the capability of proposed guarantees, a real-
time voice transmission is considered. VoIP stream employs
the well-known ON-OFF fluid model for its arrival process and
the holding time in both states are exponentially distributed
with mean 6.1s and 8.5s, respectively. Moreover, the delay
bound (i.e. Dmax) is 20ms. In the following, based on
opportunistic scheduling, we evaluate type-I and type-II QoS
guaranteed throughput for various computation approaches
(i.e. no, worst, random, and greedy ones).

In Figure 9, with τ = 0.02, more throughput is obtained for
type-II guarantee, as we exploit tighter bound (i.e. Chernoff’s
bound) with more underlying assumption. Facing the heavy
PSs’ traffic loads, greedy networking for its greedy computa-
tion ability, still provides the remarkable performance as com-
pared to other schemes. The random and worst computations
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as well as existing schemes (i.e. no computation) give much
few throughput with only slight difference under these PSs’
highly active areas. In addition, with respect to degree of QoS
guarantee (i.e. τ ), Figure 10 also exhibits the effectiveness
to perform in-network computation to eliminate unnecessary
transmissions. Loose τ gives more throughput and both types
of guarantees present significant throughput gain as compared
with existing schemes.

Finally, we investigate the attainable end-to-end throughput
with respect to λnS in Figure 11, while CRs and PSs might
both exploit greedy computations. As being secondary users,
CRs do not expect great compression of PSs’ traffic as
T sets to 12 for all PSs in TABLE II. It turns out that
there are incremental enhancements among three computation
scenarios (i.e. only CRs adopt computations, CRs and 10%
of PSs adopt computations, and all CRs and PSs adopt
computations), whose prominent throughput gains all surpass
existing schemes. As a summary, above evaluations suggest
a new design concept: rather than struggling improvement
from sophisticated link-level algorithms, our mechanism re-
sorts to greater network-level gain and outperforms existing

schemes with about 90% delay reduction and equivalently 10
dB throughput gain. Moreover, such spectral efficiency (i.e.
network throughput per bandwidth) enhancement could be
translated to better energy efficiency, as less relays are required
to operate for successful data transportation and thus total en-
ergy saving. That is, the great achievement of end-to-end delay
improvement from proposed schemes indeed bring remarkable
energy saving. Therefore, we introduce a new paradigm for
reliable spectrum efficient communications regardless of PSs’
heavily traffic loads and offer a novel avenue toward energy
efficiency in large-scale spectrum-sharing WSNs.

IX. CONCLUSION

In this paper, the fundamental challenge for spectrum effi-
ciency over large-scale WSNs is addressed by exploiting cog-
nitive radio technology and in-network computation to explore
extra available transmission opportunities for cognitive radio
sensors’ traffic. From the histograms of minimum cuts, achiev-
able network capacity are first examined via random net-
work coding. Leveraging distributed source coding, proposed
greedy networking enables distributed computing functionality
and provides more concurrent transmission opportunities with
significant delay improvement. Furthermore, by analytically
deriving packet delay under proposed networking, statistical
QoS guarantees characterize the attainable throughput with
guaranteed delay and successfully demonstrate communication
efficiency (i.e. 10 dB throughput gain) with great practicability.
Performance evaluations certify that our distributed designs
enjoy great scalability for large-scale networks and we have
presented a novel paradigm for spectrum efficiency, particu-
larly crucial for spectrum sharing in large WSNs and machine-
to-machine communications.

APPENDIX A
THE PROOF OF COROLLARY 1

From Lemma 1, we have that Pr{Ak} ≤ exp{[−ε − (1 −
ε) ln(1−ε)]

∑K
i=1 γi}. There are a maximum of

∏K
i=1(Ji+1)

cuts in this chain graph. A union bound on all Ak’s gives

Pr{
⋃
k

Ak} ≤
n∑

k=0

(
n
k

)
Pr{Ck ≤ (1− ε)E[Ck]}

=

K∏
i=1

(
Ji + 1

1

)
exp{[−ε− (1− ε) ln(1− ε)]

K∑
i=1

γi}

= exp{ln[
K∏
i=1

(Ji + 1)] + [−ε− (1− ε) ln(1 − ε)]

K∑
i=1

γi}.

APPENDIX B
THE PROOF OF THEOREM 1

Let Âk to be the event {Ck ≤ (1− ε)E[C0]} and Ak to be
the event {Ck ≤ (1−ε)E[Ck]}. Recall that E[C0] = E[Ck] =
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∑K
i=1 γi for k ≥ 0. So Pr{Âk} = Pr{Ak}. Thus,

Pr{CNC
nS ,nD

≤ (1− ε)E[C0]} = Pr{
⋃
k

Âk} = Pr{
⋃
k

Ak}

≤ exp{ln[
K∏
i=1

(Ji + 1)] + [−ε− (1− ε) ln(1− ε)]

K∑
i=1

γi}

⇒Pr{CNC
nS ,nD

> (1− ε)E[C0]}

≥1−exp{ln[
K∏
i=1

(Ji + 1)] + [−ε− (1− ε) ln(1− ε)]

K∑
i=1

γi}.

APPENDIX C
THE PROOF OF THEOREM 2

To show the upper bound on Pr{CNC
nS,nD

≥ (1+ ε)E[C0]},
it is sufficient to consider the cut separating nS from all the
other nodes. Let θ ≥ 0, then

Pr{CNC
nS,nD

≥ (1 + ε)E[C0]}

≤ Pr{
K∑
i=1

CSi ≥ (1 + ε)E[C0]} ≤ min
θ≥0

E[eθ
∑K

i=1 CSi ]

eθ(1+ε)E[C0]

= min
θ≥0

exp{[eθ − 1− θ(1 + ε)]

K∑
i=1

γi}

= exp{[ε− (1 + ε) ln(1 + ε)]

K∑
i=1

γi}

where the inequality of minimum function is from Chernoff’s
bound. By differentiation with θ, we get the minimum value
ε− (1+ ε) ln(1+ ε) when θ equals to ln(1+ ε) and proof the
bound.
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